21 research outputs found

    Differential serotonergic modulation of synaptic inputs to the olfactory cortex

    Get PDF
    Serotonin (5-hydroxytriptamine, 5-HT) is an important monoaminergic neuromodulator involved in a variety of physiological and pathological functions. It has been implicated in the regulation of sensory functions at various stages of multiple modalities, but its mechanisms and functions in the olfactory system have remained elusive. Combining electrophysiology, optogenetics and pharmacology, here we show that afferent (feed-forward) pathway-evoked synaptic responses are boosted, whereas feedback responses are suppressed by presynaptic 5-HT1B receptors in the anterior piriform cortex (aPC) in vitro. Blocking 5-HT1B receptors also reduces the suppressive effects of serotonergic photostimulation of baseline firing in vivo. We suggest that by regulating the relative weights of synaptic inputs to aPC, 5-HT finely tunes sensory inputs in the olfactory cortex

    Cell Type-Specific Arousal-Dependent Modulation of Thalamic Activity in the Lateral Geniculate Nucleus

    Get PDF
    State-dependent thalamocortical activity is important for sensory coding, oscillations, and cognition. The lateral geniculate nucleus (LGN) relays visual information to the cortex, but the state-dependent spontaneous activity of LGN neurons in awake behaving animals remains controversial. Using a combination of pupillometry, extracellular, and intracellular recordings from identified LGN neurons in behaving mice, we show that thalamocortical (TC) neurons and interneurons are distinctly correlated to arousal forming two complementary coalitions. Intracellular recordings indicated that the membrane potential of LGN TC neurons was tightly correlated to fluctuations in pupil size. Inactivating the corticothalamic feedback to the LGN suppressed the arousal dependency of LGN neurons. Taken together, our results show that LGN neuronal membrane potential and action potential output are dynamically linked to arousal-dependent brain states in awake mice, and this might have important functional implications.Peer reviewe

    Thalamic Gap Junctions Control Local Neuronal Synchrony and Influence Macroscopic Oscillation Amplitude during EEG Alpha Rhythms

    Get PDF
    Although EEG alpha (α; 8–13 Hz) rhythms are often considered to reflect an “idling” brain state, numerous studies indicate that they are also related to many aspects of perception. Recently, we outlined a potential cellular substrate by which such aspects of perception might be linked to basic α rhythm mechanisms. This scheme relies on a specialized subset of rhythmically bursting thalamocortical (TC) neurons (high-threshold bursting cells) in the lateral geniculate nucleus (LGN) which are interconnected by gap junctions (GJs). By engaging GABAergic interneurons, that in turn inhibit conventional relay-mode TC neurons, these cells can lead to an effective temporal framing of thalamic relay-mode output. Although the role of GJs is pivotal in this scheme, evidence for their involvement in thalamic α rhythms has thus far mainly derived from experiments in in vitro slice preparations. In addition, direct anatomical evidence of neuronal GJs in the LGN is currently lacking. To address the first of these issues we tested the effects of the GJ inhibitors, carbenoxolone (CBX), and 18β-glycyrrhetinic acid (18β-GA), given directly to the LGN via reverse microdialysis, on spontaneous LGN and EEG α rhythms in behaving cats. We also examined the effect of CBX on α rhythm-related LGN unit activity. Indicative of a role for thalamic GJs in these activities, 18β-GA and CBX reversibly suppressed both LGN and EEG α rhythms, with CBX also decreasing neuronal synchrony. To address the second point, we used electron microscopy to obtain definitive ultrastructural evidence for the presence of GJs between neurons in the cat LGN. As interneurons show no phenotypic evidence of GJ coupling (i.e., dye-coupling and spikelets) we conclude that these GJs must belong to TC neurons. The potential significance of these findings for relating macroscopic changes in α rhythms to basic cellular processes is discussed

    Closed-loop brain stimulation augments fear extinction in male rats

    Get PDF
    Dysregulated fear reactions can result from maladaptive processing of trauma-related memories. In post-traumatic stress disorder (PTSD) and other psychiatric disorders, dysfunctional extinction learning prevents discretization of trauma-related memory engrams and generalizes fear responses. Although PTSD may be viewed as a memory-based disorder, no approved treatments target pathological fear memory processing. Hippocampal sharp wave-ripples (SWRs) and concurrent neocortical oscillations are scaffolds to consolidate contextual memory, but their role during fear processing remains poorly understood. Here, we show that closed-loop, SWR triggered neuromodulation of the medial forebrain bundle (MFB) can enhance fear extinction consolidation in male rats. The modified fear memories became resistant to induced recall (i.e., ‘renewal’ and ‘reinstatement’) and did not reemerge spontaneously. These effects were mediated by D2 receptor signaling-induced synaptic remodeling in the basolateral amygdala. Our results demonstrate that SWR-triggered closed-loop stimulation of the MFB reward system enhances extinction of fearful memories and reducing fear expression across different contexts and preventing excessive and persistent fear responses. These findings highlight the potential of neuromodulation to augment extinction learning and provide a new avenue to develop treatments for anxiety disorders

    Systemic administration of ivabradine, a hyperpolarization‐activated cyclic nucleotide‐gated channel inhibitor, blocks spontaneous absence seizures

    Get PDF
    Objective: Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are known to be involved in the generation of absence seizures (ASs), and there is evidence that cortical and thalamic HCN channel dysfunctions may have a proabsence role. Many HCN channel blockers are available, but their role in ASs has been investigated only by localized brain injection or in in vitro model systems due to their limited brain availability. Here, we investigated the effect on ASs of orally administered ivabradine (an HCN channel blocker approved for the treatment of heart failure in humans) following injection of the P-glycoprotein inhibitor elacridar, which is known to increase penetration into the brain of drug substrates for this efflux transporter. The action of ivabradine was also tested following in vivo microinjection into the cortical initiation network (CIN) of the somatosensory cortex and in the thalamic ventrobasal nucleus (VB) as well as on cortical and thalamocortical neurons in brain slices. Methods: We used electroencephalographic recordings in freely moving Genetic Absence Epilepsy Rats From Strasbourg (GAERSs) to assess the action of oral administration of ivabradine, with and without elacridar, on ASs. Ivabradine was also microinjected into the CIN and VB of GAERSs in vivo and applied to Wistar CIN and GAERS VB slices while recording patch-clamped cortical Layer 5/6 and thalamocortical neurons, respectively. Results: Oral administration of ivabradine markedly and dose-dependently reduced ASs. Ivabradine injection into CIN abolished ASs and elicited small-amplitude 4–7-Hz waves (without spikes), whereas in the VB it was less potent. Moreover, ivabradine applied to GAERS VB and Wistar CIN slices selectively decreased HCN channel-dependent properties of cortical Layer 5/6 pyramidal and thalamocortical neurons, respectively. Significance: These results provide the first demonstration of the antiabsence action of a systemically administered HCN channel blocker, indicating the potential of this class of drugs as a novel therapeutic avenue for ASs

    Enhanced tonic GABAA inhibition in typical absence epilepsy

    Get PDF
    The cellular mechanisms underlying typical absence seizures, which characterize various idiopathic generalized epilepsies, are not fully understood, but impaired GABAergic inhibition remains an attractive hypothesis. In contrast, we show here that extrasynaptic GABAA receptor–dependent ‘tonic’ inhibition is increased in thalamocortical neurons from diverse genetic and pharmacological models of absence seizures. Increased tonic inhibition is due to compromised GABA uptake by the GABA transporter GAT–1 in the genetic models tested, and GAT–1 is critical in governing seizure genesis. Extrasynaptic GABAA receptors are a requirement for seizures in two of the best characterized models of absence epilepsy, and the selective activation of thalamic extrasynaptic GABAA receptors is sufficient to elicit both electrographic and behavioural correlates of seizures in normal animals. These results identify an apparently common cellular pathology in typical absence seizures that may have epileptogenic significance, and highlight novel therapeutic targets for the treatment of absence epilepsy.peer-reviewe

    ATP-Dependent Infra-Slow (<0.1 Hz) Oscillations in Thalamic Networks

    Get PDF
    An increasing number of EEG and resting state fMRI studies in both humans and animals indicate that spontaneous low frequency fluctuations in cerebral activity at <0.1 Hz (infra-slow oscillations, ISOs) represent a fundamental component of brain functioning, being known to correlate with faster neuronal ensemble oscillations, regulate behavioural performance and influence seizure susceptibility. Although these oscillations have been commonly indicated to involve the thalamus their basic cellular mechanisms remain poorly understood. Here we show that various nuclei in the dorsal thalamus in vitro can express a robust ISO at ∼0.005–0.1 Hz that is greatly facilitated by activating metabotropic glutamate receptors (mGluRs) and/or Ach receptors (AchRs). This ISO is a neuronal population phenomenon which modulates faster gap junction (GJ)-dependent network oscillations, and can underlie epileptic activity when AchRs or mGluRs are stimulated excessively. In individual thalamocortical neurons the ISO is primarily shaped by rhythmic, long-lasting hyperpolarizing potentials which reflect the activation of A1 receptors, by ATP-derived adenosine, and subsequent opening of Ba2+-sensitive K+ channels. We argue that this ISO has a likely non-neuronal origin and may contribute to shaping ISOs in the intact brain

    Activity of cortical and thalamic neurons during the slow (<1 Hz) rhythm in the mouse in vivo

    Get PDF
    During NREM sleep and under certain types of anaesthesia, the mammalian brain exhibits a distinctive slow (<1 Hz) rhythm. At the cellular level, this rhythm correlates with so-called UP and DOWN membrane potential states. In the neocortex, these UP and DOWN states correspond to periods of intense network activity and widespread neuronal silence, respectively, whereas in thalamocortical (TC) neurons, UP/DOWN states take on a more stereotypical oscillatory form, with UP states commencing with a low-threshold Ca2+ potential (LTCP). Whilst these properties are now well recognised for neurons in cats and rats, whether or not they are also shared by neurons in the mouse is not fully known. To address this issue, we obtained intracellular recordings from neocortical and TC neurons during the slow (<1 Hz) rhythm in anaesthetised mice. We show that UP/DOWN states in this species are broadly similar to those observed in cats and rats, with UP states in neocortical neurons being characterised by a combination of action potential output and intense synaptic activity, whereas UP states in TC neurons always commence with an LTCP. In some neocortical and TC neurons, we observed ‘spikelets’ during UP states, supporting the possible presence of electrical coupling. Lastly, we show that, upon tonic depolarisation, UP/DOWN states in TC neurons are replaced by rhythmic high-threshold bursting at ~5 Hz, as predicted by in vitro studies. Thus, UP/DOWN state generation appears to be an elemental and conserved process in mammals that underlies the slow (<1 Hz) rhythm in several species, including humans

    Differential Serotonergic Modulation of Synaptic Inputs to the Olfactory Cortex

    No full text
    Serotonin (5-hydroxytriptamine, 5-HT) is an important monoaminergic neuromodulator involved in a variety of physiological and pathological functions. It has been implicated in the regulation of sensory functions at various stages of multiple modalities, but its mechanisms and functions in the olfactory system have remained elusive. Combining electrophysiology, optogenetics and pharmacology, here we show that afferent (feed-forward) pathway-evoked synaptic responses are boosted, whereas feedback responses are suppressed by presynaptic 5-HT1B receptors in the anterior piriform cortex (aPC) in vitro. Blocking 5-HT1B receptors also reduces the suppressive effects of serotonergic photostimulation of baseline firing in vivo. We suggest that by regulating the relative weights of synaptic inputs to aPC, 5-HT finely tunes sensory inputs in the olfactory cortex
    corecore